Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

$\mathrm{LiMn}_{3}\left(\mathrm{SeO}_{3}\right)_{2}\left(\mathrm{HSeO}_{3}\right)_{6}$

Magnus G. Johnston and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland Correspondence e-mail: w.harrison@abdn.ac.uk

Received 20 December 2006
Accepted 12 January 2007
Online 17 March 2007
The title compound, lithium trimanganese bis[trioxoselenate(IV)] hexakis[hydrogentrioxoselenate(IV)], is built up from a vertex-sharing network of distorted $\mathrm{Mn}^{\mathrm{III}} \mathrm{O}_{6}$ octahedra, SeO_{3} and HSeO_{3} pyramids and unusual $\mathrm{Li}(\mathrm{OH})_{6}$ octahedra, resulting in a dense three-dimensional structure. Mn, Li and one Se atom have site symmetries of $\overline{1}, \overline{3}$, and 3, respectively. An $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond helps to establish the crystal packing.

Comment

The title compound, (I), is the second lithium manganese selenite to be characterized by single-crystal diffraction, complementing $\mathrm{Li}_{5} \mathrm{Mn}_{5}\left(\mathrm{SeO}_{3}\right)_{8}$ (Wildner, 1993), which contains both $\mathrm{Mn}^{\mathrm{II}}$ and $\mathrm{Mn}^{\mathrm{III}}$ in a 4:1 ratio. In contrast, (I), which arose from an unexpected atmospheric oxidation reaction, contains only $\mathrm{Mn}^{\mathrm{III}}$.

The constituent polyhedra for (I) are shown in Fig. 1 and selected geometric data are listed in Table 1. Mn1 (site symmetry $\overline{1}$) has substantially distorted octahedral coordination to its O -atom neighbours, with four short bonds ($<1.92 \AA$) and two long bonds [2.258 (2) \AA] in a trans conformation. This distorted coordination polyhedron correlates with the predilection of the high-spin $d^{4} \mathrm{Mn}^{\text {III }}$ cation to undergo a JahnTeller distortion (Dunitz \& Orgel, 1960). The bond-valence sum (BVS) for Mn1 calculated by the method of Brown (1996) is 3.23 (expected 3.00). The Jahn-Teller radius for Mn 1 in (I), as defined by Ammeter et al. (1979), is $0.41 \AA$, indicating a significant degree of distortion. The mean Mn1-O distance of $2.022 \AA$ in (I) is in fairly good agreement with the empirical linear relationship $d_{\text {calc }}\left(\mathrm{Mn}^{\mathrm{III}}-\mathrm{O}\right)=\left(1.994+7.08 \Delta_{\text {oct }}\right) \AA$ derived by Shannon et al. (1975) for a series of high-spin $\mathrm{Mn}^{\mathrm{III}}$ containing materials, where $\Delta_{\text {oct }}$ is the octahedral distortion factor, as defined by these workers: for (I), $\Delta_{\text {oct }}=6.82 \times 10^{-3}$ and $d_{\text {calc }}(\mathrm{Mn}-\mathrm{O})=2.042 \AA$. In $\mathrm{Li}_{5} \mathrm{Mn}_{5}\left(\mathrm{SeO}_{3}\right)_{8}$ (Wildner, 1993), the axial distortion of the $\mathrm{Mn}^{\mathrm{III}} \mathrm{O}_{6}$ octahedron (Mn site symmetry $\overline{1}$) is one of the largest known, with a $\Delta_{\text {oct }}$ value of 9.02×10^{-3}.

Both $\mathrm{Se}^{\mathrm{IV}}$ atoms in (I) display their characteristic pyramidal geometries, due to the unseen lone pair occupying the fourth tetrahedral vertex about selenium. Atom Se 1 occupies a crystallographic threefold axis and the resulting $\left[\mathrm{SeO}_{3}\right]^{2-}$
group [displacement of Se 1 from the plane of its three attached O atoms $=0.8097(12) \AA$] makes three equivalent $\mathrm{Se}-\mathrm{O} 1-\mathrm{Mn} 1$ links. Atom Se 2 occupies a general position and has two short bonds $(<1.70 \AA)$ and one long bond [1.763 (2) \AA] to its O-atom neighbours [displacement of Se 2 from the O -atom plane $=0.818(2) \AA$ A]. This bond-length distribution is characteristic of the $\left[\mathrm{HSeO}_{3}\right]^{-}$hydrogenselenite ion (Verma, 1999) and the H atom attached to O 4 could clearly be discerned in a difference map. This atom participates in an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Fig. 1 and Table 2).

Atom Li1 is surrounded by six OH groupings which are part of the Se 2 hydrogenselenite groups. The Li site symmetry of $\overline{3}$ means that there is only one distinct $\mathrm{Li}-\mathrm{O}$ bond length. The $\mathrm{Li}(\mathrm{OH})_{6}$ octahedron is almost regular, with the cis $\mathrm{O}-\mathrm{Li}-\mathrm{O}$ bond angles being either $89.56(9)$ or $90.44(9)^{\circ}$. The resulting

Figure 1
A fragment of (I), showing the constituent polyhedra and the atomnumbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii. The hydrogen bond is indicated by a dashed line. [Symmetry codes: (i) $-x,-y,-z$; (ii) $y-x,-x, z$; (iii) $y, y-x,-z$; (iv) $-y, x-y, z$; (v) $x-y, x,-z$; (vi) $\frac{1}{3}-y, x+y-\frac{1}{3}, z-\frac{1}{3}$; (vii) $1-x,-y,-z$; (viii) $\frac{2}{3}+y$, $\frac{1}{3}+y-x, \frac{1}{3}-z$; (ix) $1+y-x, 1-x, z ;$ (x) $1-y, x-y, z$.]

Figure 2
A polyhedral representation [for MnO_{6} and $\mathrm{Li}(\mathrm{OH})_{6}$] of part of an (001) layer in (I), with $-0.33<z<0.33$. The Li cation is at the origin and equivalent points.

Figure 3
A polyhedral representation of the unit-cell packing in (I). The H atoms have been omitted for clarity.
$\mathrm{Li} \cdots \mathrm{H}$ separation of $2.61 \AA$ is far too long to constitute any kind of chemical bond (Baur, 1973). Such $\mathrm{Li}(\mathrm{OH})_{6}$ polyhedra have long been known to occur in layered hydroxides of the clay family (Wadsley, 1952).

The polyhedral connectivity in (I) results in pseudo-layers propagating in (001) (Fig. 2). Every $\mathrm{Li}(\mathrm{OH})_{6}$ polyhedron, located at the unit-cell origin and equivalent positions, is surrounded by six MnO_{6} octahedra in the layer. The Mn centred moieties are surrounded by two $\mathrm{Li}(\mathrm{OH})_{6}$ and four MnO_{6} groupings. The $\mathrm{Se}^{1} \mathrm{O}_{3}$ group bridges three adjacent MnO_{6} groups and the $\mathrm{HSe}_{2} \mathrm{O}_{3}$ group bridges between the Li and Mn -centred octahedra. Its third vertex (O 2) bridges to another MnO_{6} octahedron in a layer either above or below its own layer. Thus, the four distinct O atoms in (I) are all bicoordinate bridges: three form $\mathrm{Mn}-\mathrm{O}-$ Se links and one an $\mathrm{Li}-\mathrm{O}-\mathrm{Se}$ link. There are no $\mathrm{Li}-\mathrm{O}-\mathrm{Mn}$ bonds in (I).

These (0001) layers stack according to rhombohedral crystal symmetry (Fig. 3), resulting in dense polyhedral layers, bridged by the Se2-centred oxo-anions into a three-dimensional network.

Experimental

A mixture of aqueous 0.5 M ' $\mathrm{H}_{2} \mathrm{SeO}_{3}$ ' solution (dissolved SeO_{2}) $(7 \mathrm{ml})$, aqueous 1 M LiCl solution (8 ml) and $\mathrm{MnCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.714 \mathrm{~g}$, 3 mmol) was sealed in a 23 ml Teflon-lined hydrothermal bomb and heated to 473 K for 6 d . Upon cooling over a few hours and then opening the bomb, there was no solid product. The resultant colourless liquor was placed in a Petri dish and, after several weeks, dozens of small orange hexagonal platelets and blocks of (I) were seen growing. A crystal of (I) was dredged out of the viscous liquors for data collection. The reaction was repeatable.

Crystal data

$\mathrm{LiMn}_{3}\left(\mathrm{SeO}_{3}\right)_{2}\left(\mathrm{HSeO}_{3}\right)_{6}$
$D_{x}=3.740 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1193.46$
Trigonal, $R \overline{3}$
$a=11.1205$ (7) \AA
$c=14.843$ (1) \AA
$V=1589.65(18) \AA^{3}$
$Z=3$

Data collection

Bruker SMART1000 CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.256, T_{\text {max }}=0.304$
Refinement
Refinement on F^{2}
Mo $K \alpha$ radiation
$\mu=15.61 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, orange
$0.12 \times 0.11 \times 0.10 \mathrm{~mm}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.051$
$S=0.97$
1283 reflections
57 parameters

5504 measured reflections
1283 independent reflections
1017 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=32.5^{\circ}$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0231 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.66 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.62 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Li} 1-\mathrm{O} 4$	$2.155(2)$	$\mathrm{Se} 1-\mathrm{O} 1$	$1.7005(18)$
$\mathrm{Mn} 1-\mathrm{O} 3$	$1.8938(19)$	$\mathrm{Se} 2-\mathrm{O} 2$	$1.664(2)$
$\mathrm{Mn} 1-\mathrm{O} 1$	$1.9144(18)$	$\mathrm{Se} 2-\mathrm{O} 3$	$1.6963(19)$
$\mathrm{Mn} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.258(2)$	$\mathrm{Se} 2-\mathrm{O} 4$	$1.763(2)$
$\mathrm{Se} 1-\mathrm{O} 1-\mathrm{Mn} 1$	$125.19(11)$	$\mathrm{Se} 2-\mathrm{O} 3-\mathrm{Mn} 1$	$122.88(11)$
$\mathrm{Se} 2-\mathrm{O} 2-\mathrm{Mn} 1^{\mathrm{ii}}$	$120.95(11)$	$\mathrm{Se} 2-\mathrm{O} 4-\mathrm{Li} 1$	$124.35(11)$

Symmetry codes: (i) $y+\frac{2}{3},-x+y+\frac{1}{3},-z+\frac{1}{3}$; (ii) $-x+y+\frac{2}{3},-x+\frac{1}{3}, z+\frac{1}{3}$.

Table 2
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{O}^{\text {iii }}$	0.88	1.87	$2.711(3)$	159

Symmetry code: (iii) $-x+\frac{2}{3},-y+\frac{1}{3},-z+\frac{1}{3}$.

The H atom was located in a difference map and refined as riding in its as-found relative position, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. A PLATON (Spek, 2003) analysis of (I) indicated significant pseudosymmetry corresponding to the space group $R \overline{3} m$. Attempts to model the structure in this space group, in which more than 20% of the atoms violate the possible higher symmetry, led to physically unreasonable $\mathrm{Se} \cdots \mathrm{Se}$ contacts and much higer residuals and so was abandoned.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA3060). Services for accessing these data are described at the back of the journal.

inorganic compounds

References

Ammeter, J. H., Bürgi, H. B., Gamp, E., Meyer-Sandrin, V. \& Jensen, W. P. (1979). Inorg. Chem. 18, 733-750.

Baur, W. H. (1973). Acta Cryst. B29, 139-140.
Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.
Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dowty, E. (1999). ATOMS. Version 6.2 for Windows and Macintosh. Shape Software, Kingsport, Tennessee, USA.

Dunitz, J. D. \& Orgel, L. E. (1960). Adv. Inorg. Chem. 2, 1-60.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Shannon, R. D., Gamerman, P. S. \& Chenavas, J. (1975). Am. Miner. 60, 714 716.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Verma, V. P. (1999). Thermochim. Acta, 327, 63-102.
Wadsley, A. D. (1952). Acta Cryst. 5, 676-680.
Wildner, M. (1993). J. Solid State Chem. 103, 341-352.

